Unit 4: Stoichiometry \& Chemical Equations

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.
\qquad 1. In a chemical reaction, the mass of the products \qquad .
a. is less than the mass of the reactants
b. is greater than the mass of the reactants
c. is equal to the mass of the reactants
d. has no relationship to the mass of the reactants
2. In every balanced chemical equation, each side of the equation has the same number of \qquad .
a. atoms of each element
c. moles
b. molecules
d. coefficients
3. When an equation is used to calculate the amount of product that will form during a reaction, then the value obtained is called the \qquad .
a. actual yield
c. theoretical yield
b. percent yield
d. minimum yield
4. The first step in most stoichiometry problems is to \qquad _.
a. add the coefficients of the reagents
c. convert given quantities to volumes
b. convert given quantities to moles
d. convert given quantities to masses
5. When two substances react to form products, the reactant which is used up is called the \qquad .
a. determining reagent
c. excess reagent
b. limiting reagent
d. catalytic reagent
6. How many hydrogen atoms are in 5 molecules of isopropyl alcohol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$?
a. $5 \times\left(6.02 \times 10^{23}\right)$
b. 5
c. 35
d. $35 \times\left(6.02 \times 10^{23}\right)$
7. How many atoms are in 0.075 mol of titanium?
a. 1.2×10^{-25}
b. 2.2×10^{24}
c. 6.4×10^{2}
d. 4.5×10^{22}
8. Chemical equations must be balanced to satisfy \qquad .
a. the law of definite proportions
c. the law of conservation of mass
b. the law of multiple proportions
d. Avogadro's principle
9. In the reaction $2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)$, what is the ratio of moles of oxygen used to moles of CO_{2} produced?
a. 1:1
c. 1:2
b. $2: 1$
d. 2:2
\qquad 10. What is the empirical formula of a substance that is $53.5 \% \mathrm{C}, 15.5 \% \mathrm{H}$, and $31.1 \% \mathrm{~N}$ by weight?
a. $\mathrm{C}_{3} \mathrm{HN}_{2}$
b. $\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2}$
c. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}$
d. $\mathrm{CH}_{4} \mathrm{~N}_{7}$
11. In a double-replacement reaction, the \qquad .
a. products are always molecular
b. reactants are two ionic compounds
c. reactants are two elements
d. products are a new element and a new compound
12. The calculation of quantities in chemical equations is called \qquad .
a. stoichiometry
c. percent composition
b. dimensional analysis
d. percent yield
13. When potassium hydroxide and barium chloride react, potassium chloride and barium hydroxide are formed. The balanced equation for this reaction is \qquad _.
a. $\mathrm{KH}+\mathrm{BaCl} \rightarrow \mathrm{KCl}+\mathrm{BaH}$
b. $\mathrm{KOH}+\mathrm{BaCl} \rightarrow \mathrm{KCl}+\mathrm{BaOH}$
c. $2 \mathrm{KOH}+\mathrm{BaCl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Ba}(\mathrm{OH})_{2}$
d. $\mathrm{KOH}+\mathrm{BaCl}_{2} \rightarrow \mathrm{KCl}_{2}+\mathrm{BaOH}$
14. The reaction $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ is an example of which type of reaction?
a. combustion reaction
c. combination reaction
b. single-replacement reaction
d. decomposition reaction
15. The lowest whole-number ratio of the elements in a compound is called the \qquad .
a. empirical formula
c. binary formula
b. molecular formula
d. representative formula
16. Use the activity series of metals to complete a balanced chemical equation for the following single replacement reaction.
$\mathrm{Ag}(s)+\mathrm{KNO}_{3}(a q) \rightarrow$
a. $\mathrm{AgNO}_{3}+\mathrm{K}$
b. $\mathrm{AgK}+\mathrm{NO}_{3}$
c. AgKNO_{3}
d. No reaction takes place because silver is less reactive than potassium.
17. What is the percent composition of carbon, in heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$?
a. 12%
b. 19%
c. 68%
d. 84%
18. How many molecules are in $2.10 \mathrm{~mol} \mathrm{CO}_{2}$?
a. $2.53 \times 10_{24}^{24}$ molecules
b. 3.79×10^{24} molecules
c. 3.49×10^{-24} molecules
d. 1.26×10^{24} molecules
19. How many mnles of tungsten atoms are in 4.8×10^{25} atnms of tungsten?
a. 8.0×10^{2} moles
b. 8.0×10^{1} moles
c. $1.3 \times 10_{-2}^{-1}$ moles
d. 1.3×10^{-2} moles
20. The atomic masses of any two elements contain the same number of \qquad .
a. atoms
c. ions
b. grams
d. milliliters
21. What is the balanced chemical equation for the reaction that takes place between bromine and sodium iodide?
a. $\mathrm{Br}_{2}+\mathrm{NaI} \rightarrow \mathrm{NaBr}_{2}+\mathrm{I}$
b. $\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}$
c. $\mathrm{Br}+\mathrm{NaI}_{2} \rightarrow \mathrm{NaBrl}_{2}$
d. $\mathrm{Br}+\mathrm{NaI}_{2} \rightarrow \mathrm{NaBr}+\mathrm{I}_{2}$
22. What is the molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$?
a. 144 g
b. 138 g
c. 96 g
d. 78 g
23. Avogadro's number of representative particles is equal to one \qquad .
a. kilogram
c. kelvin
b. gram
d. mole
24. The molar mass of $\mathrm{C}_{7} \mathrm{H}_{16}$ and the molar mass of CaCO_{3} contain approximately the same number of \qquad _.
a. carbon atoms
c. cations
b. anions
d. grams
25. When the equation $\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$ is balanced, what is the coefficient for Cl_{2} ?
a. 1
b. 2
c. 3
d. 4
26. How many moles of aluminum are needed to react completely with 1.2 mol of FeO ? $2 \mathrm{Al}(s)+3 \mathrm{FeO}(s) \rightarrow 3 \mathrm{Fe}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)$
a. 1.2 mol
b. 0.8 mol
c. $\quad 1.6 \mathrm{~mol}$
d. 2.4 mol
27. When iron rusts in air, iron(III) oxide is produced. How many moles of oxygen react with 2.4 mol of iron in the rusting reaction?
$4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$
a. 1.2 mol
b. 1.8 mol
c. 2.4 mol
d. 3.2 mol
28. Aluminum reacts with sulfuric acid to produce aluminum sulfate and hydrogen gas. How many grams of aluminum sulfate would be formed if $250 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ completely reacted with aluminum? $2 \mathrm{Al}(s)+3 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$
a. 0.85 g
b. 290 g
c. 450 g
d. 870 g
29. Metallic copper is formed when aluminum reacts with copper(II) sulfate. How many grams of metallic copper can be obtained when 54.0 g of Al react with 319 g of CuSO_{4} ?
$2 \mathrm{Al}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$
a. 21.2 g
b. 127 g
c. 162 g
d. 381 g
30. In a particular reaction between copper metal and silver nitrate, 12.7 g Cu produced 38.1 g Ag . What is the percent yield of silver in this reaction?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
a. 56.7%
b. 77.3%
c. 88.2%
d. 176%

Unit 4: Stoichiometry \& Chemical Equations Answer Section

MULTIPLE CHOICE

1. ANS: C DIF: L1

STO: 3.4.10.A. 7
2. ANS: A

OBJ: 11.1.3
3. ANS: C
4. ANS: B

STO: 3.4.12.B. 2
5. ANS: B

DIF: L1
DIF: L1

DIF: L2
REF: p. 291, p. 292
OBJ: 10.1.2
8. ANS: C DIF: L1 STO: 3.4.10.A. 7
9. ANS: C

DIF: L1
DIF: L2
STO: 3.4.12.A. 1
11. ANS: B

OBJ: 11.2.1
DIF: L1
STO: 3.4.10.A. 7
12. ANS: A DIF: L1

STO: 3.4.12.B. 2
13. ANS: C DIF: L2

STO: 3.4.10.A. 7
14. ANS: C

OBJ: 11.2.2
DIF: L1
STO: 3.4.10.A. 7
15. ANS: A DIF: L1

STO: 3.4.12.A. 1
16. ANS: D

OBJ: 11.2.1
17. ANS: D

STO: 3.4.12.A. 1
18. ANS: D

OBJ: 10.1.2
19. ANS: B

OBJ: 10.1.2
20. ANS: A

STO: 3.4.10.A. 2
21. ANS: B

OBJ: 11.2.2
22. ANS: C

OBJ: 10.1.4
23. ANS: D
24. ANS: D

OBJ: 10.1.4
25. ANS: C

OBJ: 11.1.3
26. ANS: B

OBJ: 12.2.1
27. ANS: B

OBJ: 12.2.1
28. ANS: B

OBJ: 12.2.2
29. ANS: B

STO: 3.4.12.B.2
30. ANS: C

DIF: L2
STO: 3.4.10.A. 7
DIF: L2

DIF: L1
DIF: L2

DIF: L1
STO: 3.4.10.A. 7
DIF: L1
STO: 3.4.12.B. 2
DIF: L2
STO: 3.4.12.B. 2
DIF: L2
STO: 3.4.12.B.2
DIF: L2

DIF: L2

REF: p. 333, p. 334

REF: p. 295, p. 296

REF: p. 290 OBJ: 10.1.2
REF: p. 295, p. 296

REF: p. 327, p. 328

REF: p. 359, p. 360

REF: p. 359, p. 360

REF: p. 360, p. 361, p. 362

REF: p. 371
OBJ: 12.3.1

REF: p. 375
OBJ: 12.3.2

