## Distance, Displacement, Speed, and Velocity

## Questions for Consideration

- What is frame of reference?
- What is distance?
- How is displacement different from distance?
- What is speed?
- What is velocity?
- What are scalar and vector quantities?


## Frame of Reference

- Coordinate frame within which to measure position, motion, or other properties of an object.
- OR...
- Observational frame tied to the motion of an observer.
- In Newtonian physics, all motion must be defined in terms of a reference frame.
- Relative Motion


## Reference Frame

- Is the speed of the ball different relative to the pitcher, the truck driver, and the jet pilot? Why or why not?



## Distance

- Distance (d) - how far an object travels.
- Does not depend on direction.
- Imagine an ant crawling along a ruler.

- What distance did the ant travel?
- $d=3 \mathrm{~cm}$


## Distance

- Distance does not depend on direction.
- Here's our intrepid ant explorer again.

- Now what distance did the ant travel?
- $d=3 \mathrm{~cm}$
- Does his direction change the answer?


## Distance

- Distance does not depend on direction.
- Let's follow the ant again.

- What distance did the ant walk this time?
- $\mathrm{d}=7 \mathrm{~cm}$


## Displacement

- Displacement ( $\Delta \mathrm{x}$ ) - difference between an object's final position and its starting position.
- Does depend on direction.
- Displacement = final position - initial position
- $\Delta \mathrm{X}=\mathrm{X}_{\text {final }}-\mathrm{X}_{\text {initial }}$
- In order to define displacement, we need directions.
- Examples of directions:
-     + and -
- N, S, E, W
- Angles


## Displacement vs. Distance

- Example of distance:
- The ant walked 3 cm .
- Example of displacement:
- The ant walked 3 cm EAST.
- An object's distance traveled and its displacement aren't always the same!


## Displacement

- Let's revisit our ant, and this time we'll find his displacement.

- Distance: 3 cm
- Displacement: +3 cm
- The positive gives the ant a direction!


## Displacement

- Find the ant's displacement again.
- Remember, displacement has direction!

- Distance: 3 cm
- Displacement: -3 cm


## Displacement

- Find the distance and displacement of the ant.

- Distance: 7 cm
- Displacement: +3 cm


## Displacement vs. Distance

- An athlete runs around a track that is 100 meters long three times, then stops.
- What is the athlete's distance and displacement?

- Distance $=300 \mathrm{~m}$
- Displacement = 0 m
- Why?


## Speed

- Speed (s) - Rate at which an object is moving.
- speed = distance / time
- $\mathrm{s}=\mathrm{d} / \mathrm{t}$
- Like distance, speed does not depend on direction.


## Speed

- A car drives 100 meters in 5 seconds.

- What is the car's average speed?
- $\mathrm{s}=\mathrm{d} / \mathrm{t}$
- $\mathrm{s}=(100 \mathrm{~m}) /(5 \mathrm{~s})=20 \mathrm{~m} / \mathrm{s}$


## Speed

- A rocket is traveling at $10 \mathrm{~km} / \mathrm{s}$. How long does it take the rocket to travel 30 km ?


## Speed

- A racecar is traveling at $85.0 \mathrm{~m} / \mathrm{s}$. How far does the car travel in 30.0 s?



## Velocity

- Velocity (v) - speed with direction.
- velocity = displacement / time
- $\mathrm{v}=\Delta \mathrm{x} / \mathrm{t}$


## Pulling It All Together

- Back to our ant explorer!

- Distance traveled: 7 cm
- Displacement: +3 cm
- Average speed: $(7 \mathrm{~cm}) /(5 \mathrm{~s})=1.4 \mathrm{~cm} / \mathrm{s}$
- Average velocity: $(+3 \mathrm{~cm}) /(5 \mathrm{~s})=+0.6 \mathrm{~cm} / \mathrm{s}$


## Scalar and Vector Quantities

- Scalar Quantity - has magnitude but not direction.
- Distance and speed are scalar quantities.
- Vector Quantity - has magnitude and direction.
- Displacement and velocity are vector quantities.

